redis主从架构进行QPS压测以及水平扩容支撑更高QPS

发布 : 2017-06-13 分类 : 大数据 浏览 :

1.对redis读写分离架构进行压测,单实例写QPS+单实例读QPS

1
redis提供了redis-benchmark压测工具
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
[root@matrix-cache01 ~]# cd redis-3.2.8/src
[root@matrix-cache01 src]# ./redis-benchmark -h 192.168.31.231
====== PING_INLINE ======
100000 requests completed in 1.11 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.91% <= 1 milliseconds
99.97% <= 3 milliseconds
100.00% <= 3 milliseconds
89847.26 requests per second
====== PING_BULK ======
100000 requests completed in 1.15 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.91% <= 1 milliseconds
100.00% <= 4 milliseconds
100.00% <= 4 milliseconds
86730.27 requests per second
====== SET ======
100000 requests completed in 1.13 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.71% <= 1 milliseconds
100.00% <= 3 milliseconds
100.00% <= 3 milliseconds
88731.15 requests per second
====== GET ======
100000 requests completed in 1.21 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.90% <= 1 milliseconds
99.99% <= 4 milliseconds
100.00% <= 4 milliseconds
82918.74 requests per second
====== INCR ======
100000 requests completed in 1.02 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.96% <= 3 milliseconds
100.00% <= 3 milliseconds
97560.98 requests per second
====== LPUSH ======
100000 requests completed in 1.04 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.98% <= 3 milliseconds
100.00% <= 3 milliseconds
96061.48 requests per second
====== RPUSH ======
100000 requests completed in 1.43 seconds
50 parallel clients
3 bytes payload
keep alive: 1
98.61% <= 1 milliseconds
99.89% <= 2 milliseconds
99.90% <= 3 milliseconds
99.94% <= 4 milliseconds
99.99% <= 5 milliseconds
100.00% <= 6 milliseconds
70126.23 requests per second
====== LPOP ======
100000 requests completed in 1.16 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.82% <= 1 milliseconds
99.97% <= 3 milliseconds
99.98% <= 4 milliseconds
100.00% <= 4 milliseconds
86430.42 requests per second
====== RPOP ======
100000 requests completed in 1.12 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.85% <= 1 milliseconds
99.93% <= 2 milliseconds
99.99% <= 4 milliseconds
100.00% <= 4 milliseconds
89445.44 requests per second
====== SADD ======
100000 requests completed in 1.11 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.88% <= 1 milliseconds
99.97% <= 3 milliseconds
100.00% <= 3 milliseconds
89847.26 requests per second
====== SPOP ======
100000 requests completed in 1.21 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.28% <= 1 milliseconds
99.97% <= 3 milliseconds
99.98% <= 4 milliseconds
100.00% <= 4 milliseconds
82781.45 requests per second
====== LPUSH (needed to benchmark LRANGE) ======
100000 requests completed in 1.06 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.82% <= 1 milliseconds
99.96% <= 3 milliseconds
100.00% <= 3 milliseconds
94339.62 requests per second
====== LRANGE_100 (first 100 elements) ======
100000 requests completed in 1.06 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.88% <= 1 milliseconds
99.95% <= 3 milliseconds
100.00% <= 3 milliseconds
94517.96 requests per second
====== LRANGE_300 (first 300 elements) ======
100000 requests completed in 1.07 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.88% <= 1 milliseconds
99.97% <= 2 milliseconds
100.00% <= 2 milliseconds
93545.37 requests per second
====== LRANGE_500 (first 450 elements) ======
100000 requests completed in 1.14 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.70% <= 1 milliseconds
99.95% <= 3 milliseconds
100.00% <= 3 milliseconds
87950.75 requests per second
====== LRANGE_600 (first 600 elements) ======
100000 requests completed in 1.16 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.39% <= 1 milliseconds
99.98% <= 3 milliseconds
100.00% <= 3 milliseconds
86058.52 requests per second
====== MSET (10 keys) ======
100000 requests completed in 0.98 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.89% <= 1 milliseconds
99.94% <= 3 milliseconds
100.00% <= 3 milliseconds
101832.99 requests per second
本文作者 : Matrix
原文链接 : https://matrixsparse.github.io/2017/06/13/Redis主从架构进行QPS压测以及水平扩容支撑更高QPS/
版权声明 : 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明出处!

知识 & 情怀 | 二者兼得

微信扫一扫, 向我投食

微信扫一扫, 向我投食

支付宝扫一扫, 向我投食

支付宝扫一扫, 向我投食

留下足迹